Transport properties of carbonated silicate melt at high pressure

نویسندگان

  • Dipta B Ghosh
  • Bijaya B Karki
چکیده

Carbon dioxide, generally considered as the second most abundant volatile component in silicate magmas, is expected to significantly influence various melt properties. In particular, our knowledge about its dynamical effects is lacking over most of Earth's mantle pressure regime. Here, we report the first-principles molecular dynamics results on the transport properties of carbonated MgSiO3 liquid under conditions of mantle relevance. They show that dissolved CO2 systematically enhances the diffusion rates of all elements and lowers the melt viscosity on average by factors of 1.5 to 3 over the pressure range considered. It is remarkable that CO2 has very little or no influence on the electrical conductivity of the silicate melt under most conditions. Simulations also predict anomalous dynamical behavior, increasing diffusivity and conductivity and decreasing viscosity with compression in the low-pressure regime. This anomaly and the concomitant increase of pressure and temperature with depth together make these transport coefficients vary modestly over extended portions of the mantle regime. It is possible that the melt electrical conductivity under conditions corresponding to the 410- and 660-km seismic discontinuities is at a detectable level by electromagnetic sounding observation. In addition, the low melt viscosity values of 0.2 to 0.5 Pa⋅s at these depths and near the core-mantle boundary may imply high mobility of possible melts in these regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport coefficients in silicate melts from structural data via a structure-thermodynamics-dynamics relationship.

The viscosity and diffusivities of silicate melts under high-pressure, high-temperature conditions are difficult to obtain experimentally. Estimation and extrapolation of transport coefficients are further complicated by their extreme sensitivity to melt composition. Our molecular-dynamics simulations show that, over a broad range of melt composition, temperature, and pressure, the diffusivitie...

متن کامل

Water-melt interaction in hydrous magmatic systems at high temperature and pressure

Experimental data on the structure and properties of melts and fluids relevant to water-melt interaction in hydrous magmatic systems in the Earth's interior have been reviewed. Complex relationships between water solubility in melts and their bulk composition [Al/Si-ratio, metal oxide/(Al + Si) and electron properties of metal cations] explain why water solubility in felsic magmas such as those...

متن کامل

TEM OBSERVATIONS OF AMORPHIZED SILICATE-PEROVSKITE, AKIMOTOITE AND Ca-RICH MAJORITE IN A SHOCK-INDUCED MELT VEIN IN THE TENHAM L6 CHONDRITE

Introduction: Tenham is a famous highly shocked L6 chondrite. Previous studies revealed a series of high-pressure minerals in the melt vein, including ringwoodite, majorite, wadsleyite, magnesiowüstite, akimotoite, silicate-perovskite, and hollanditestructured plagioclase [1-8]. These high-pressure minerals have been studied intensively in static highpressure experiments [9,10]. The presence of...

متن کامل

Preface for the article collection “High-Pressure Earth and Planetary Science in the last and next decade”

Preface A special session entitled “Early Earth from accumulation to formation-” was held on May 24, 2015 during the Japan Geoscience Union (JpGU) annual meeting. This session aimed to bring together high-pressure/hightemperature experiment on physics and chemistry of deep Earth materials, natural observation, and theoretical modeling within the principal subject areas of “Early Earth” research...

متن کامل

Chemical diffusion of fluorine in jadeite melt at high pressure

The chemical diffusion of fluorine in jadeite melt has been investigated from 10 to 15 kbars and 1200 to 14OO“C using diffusion couples of jadeite melt and fluorine-bearing jadeite melt (6.3 wt.% F). The diffusion profile data indicate that the diffusion process is concentration-independent, binarv. F-O interdiffision. The F-O interdiffusion coefficient ranges from 1.3 X IO-’ to 7.1 X lo-’ cm*/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017